Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress

نویسندگان

  • Yong Zhu
  • Guoying Deng
  • Anqi Ji
  • Jiayi Yao
  • Xiaoxiao Meng
  • Jinfeng Wang
  • Qian Wang
  • Qiugen Wang
  • Ruilan Wang
چکیده

Acute paraquat (PQ) poisoning is one of the most common forms of pesticide poisoning. Oxidative stress and inflammation are thought to be important mechanisms in PQ-induced acute lung injury (ALI). Selenium (Se) can scavenge intracellular free radicals directly or indirectly. In this study, we investigated whether porous Se@SiO2 nanospheres could alleviate oxidative stress and inflammation in PQ-induced ALI. Male Sprague Dawley rats and RLE-6TN cells were used in this study. Rats were categorized into 3 groups: control (n=6), PQ (n=18), and PQ + Se@SiO2 (n=18). The PQ and PQ + Se@SiO2 groups were randomly and evenly divided into 3 sub-groups according to different time points (24, 48 and 72 h) after PQ treatment. Porous Se@SiO2 nanospheres 1 mg/kg (in the PQ + Se@SiO2 group) were administered via intraperitoneal injection every 24 h. Expression levels of reduced glutathione, malondialdehyde, superoxide dismutase, reactive oxygen species (ROS), nuclear factor-κB (NF-κB), phosphorylated NF-κB (p-NF-κB), tumor necrosis factor-α and interleukin-1β were detected, and a histological analysis of rat lung tissues was performed. The results showed that the levels of ROS, malondialdehyde, NF-κB, p-NF-κB, tumor necrosis factor-α and interleukin-1β were markedly increased after PQ treatment. Glutathione and superoxide dismutase levels were reduced. However, treatment with porous Se@SiO2 nanospheres markedly alleviated PQ-induced oxidative stress and inflammation. Additionally, the results from histological examinations and wet-to-dry weight ratios of rat lung tissues showed that lung damage was reduced after porous Se@SiO2 nanosphere treatment. These data indicate that porous Se@SiO2 nanospheres may reduce NF-κB, p-NF-κB and inflammatory cytokine levels by inhibiting ROS in PQ-induced ALI. This study demonstrates that porous Se@SiO2 nanospheres may be a therapeutic method for use in the future for PQ poisoning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Rosa canina Extract Against Paraquat-induced Lung Injury

  Background & objectives: Paraquat is a toxic herbicide that is widely used in many countries. Paraquat selectively accumulates in the lung tissue and leads to severe pulmonary injury through the oxidative and inflammatory processes. The plant Rosa canina L. has been used for long years as an herbal medicine throughout the world. Rosa canina L. is a member of Rosacea family and shows therapeut...

متن کامل

Consumption of Hydrogen Water Reduces Paraquat-Induced Acute Lung Injury in Rats

Exposure to paraquat leads to acute lung injury and oxidative stress is widely accepted as a contributor to paraquat-induced acute lung injury. Recent studies have reported that consumption of water with dissolved molecular hydrogen to a saturated level (hydrogen water) prevents oxidative stress-induced diseases. Here, we investigated whether consumption of saturated hydrogen saline protects ra...

متن کامل

Protective effect of Xuebijing injection on paraquat-induced pulmonary injury via down-regulating the expression of p38 MAPK in rats

BACKGROUND Exposure to paraquat results in acute lung injury. A systemic inflammatory response has been widely established as a contributor to paraquat-induced acute lung injury. Recent studies have reported that consumption of Xuebijing prevents inflammatory response-induced diseases. This study investigated whether consumption of Xuebijing protected rats against paraquat-induced acute lung in...

متن کامل

Time course changes of oxidative stress and inflammation in hyperoxia-induced acute lung injury in rats

Objective(s):Therapies with high levels of oxygen are commonly used in the management of critical care. However, prolonged exposure to hyperoxia can cause acute lung injury. Although oxidative stress and inflammation are purported to play an important role in the pathogenesis of acute lung injury, the exact mechanisms are still less known in the hyperoxic acute lung injury (HALI).   Materials ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017